## at 6.00 p.m. 23<sup>rd</sup> June 2021 at The Sustainability Trust and on Zoom

#### Discussion of topics raised in EW84

- The dry year myth
- ► A Security of Supply Service for Huntly power station
- **▶** Torrefied Wood fuel for Huntly power station
- **▶** The Lake Onslow concept is fatally flawed
- Hydrogen planes won't get off the ground
- ► EV's are a costly way to reduce CO<sub>2</sub> emissions

## The Dry Year Myth

NZ hydro - capacity factor (from MBIE data)



## The Dry Year Myth

NZ hydro - capacity factor (from MBIE data)



#### The "dry year" myth

- Every year in NZ is a wet year, but some are wetter than others
- The installed hydro electric generation capacity is 5400 MW in NZ
- ► The hydro generation in NZ is on average 51.7% of installed capacity
- ► The normal operating annual output of hydro generation is 49.5% to 54% of installed capacity on average.
- Over the last 25 years the lowest annual hydro generation was 47.1% on installed capacity in 2001 and 2008
- ► The generation of 2.4% of installed capacity (i.e. 1,100 GWh) would be sufficient to bring the hydro generation up from the minimum output in a low rainfall year up into the normal operating range.
- ▶ MBIE says that 5,000 GWh is needed to deal with a dry year

## A Security of Supply Service for Huntly



### A Security of Supply Service for Huntly

- 1,100 GWh of back-up electricity generation is needed to provide a Security of Supply Service (SSS) in a low rainfall year or to accommodate a major equipment failure
- ▶ 1,100 GWh would be generated by 2 x 250 MW units at Huntly power station operating 24/7 for 3 months. (or 3 units for 2 months)
- ► If Huntly had been operated in SSS mode only for the last 25 years, then 95% of the CO₂ emission from coal fired power generation would have been avoided
- SSS mode would need to be funded like insurance with a levy
- Plant funded for SSS mode operation would be barred from the competitive electricity market and only operate in prescribed circumstances

#### Power station fuel made from wood

#### **BASIC TORREFACTION PRINCIPLE**



#### Huntly power station run on wood fuel?

- ► Torrefied wood has a similar calorific value to sub-bituminous coal
- Torrefied wood has a bulk density 70% of that of coal
- Huntly power station has a multi-fuel capability torun on natiral; gas or pulverised coal
- Could units at Huntly be adapted to run on powdered torrefied wood?
- ▶ 1,100 GWh of electricity generation would require 11 PJ of wood fuel (i.e. 500,000 tonnes)
- ► That quantity of torrefied wood fuel would require 20 silos 75 m high and 25 m diameter on 2 hectares for storage.

#### Lake Onslow in Central Otago

Lake Onslow from the southwest

Dam at the top of the Teviot River



Photo - S Goldthorpe



Photo - Pioneer Energy

### Lake Onslow pumped hydro concept



#### Prof Earl Bardsley's scheme

- Original scheme in 2005
  - Raise level from 700 m to 800 m
  - ▶ 15 km tunnel to Clutha River near Teviot at 90 m elevation
  - Would need a 3 km long dam
- Revised scheme in 2020
  - ▶ Raise lake level to 760 m
  - ▶ 24 km tunnel to Lake Roxburgh at 135 m elevation —————
  - Would need a 1.5 km long dam

# 858 800 833 533 524 845 527 515 806

#### Box model of Lake Onslow elevations

Existing lake 12 km<sup>2</sup> 760 m lake 68 km<sup>2</sup> 800 m lake 84 km<sup>2</sup> Catchment 200 km<sup>2</sup>

3 km Dam for 800 m elevation lake

Upper Taieri River catchment to the east is beyond a low ridge

#### The Lake Onslow scheme is fatally flawed

- Reduced scope of the scheme is still 4-5 times greater than is needed to address the "dry year" problem
- ► The 1.5 m long earth dam would be the second longest dam in the world after the Three Gorges concrete dam in China
- Increased water losses due to seepage and evaporation would necessitate continual pumping of water to maintain the elevated lake level in the low rainfall region of Central Otago
- Round trip electrical efficiency would be about 60%. The electricity price differential between years is inadequate to earn any income.
- Filling Lake Onslow over 6 months could create an electricity shortage in New Zealand bigger than the "dry year" problem.
  - Comments and discussion?

## Hydrogen fuelled plane concept for 200 passengers



Airbus vision for zero emissions plane by 2035

#### Hydrogen containment is heavy

- ► A liquid hydrogen storage container typically weighs about 16 times the weight of hydrogen that it contains
- ▶ USDOE development goal is to reduced hydrogen containment weight down to 10 times the weight of the hydrogen contained.
- ▶ A tank of jet fuel typically weighs 30% of the plane take-off weight
- About 20% of jet fuel is consumed by take-off, climbing and descent.
- A tank of hydrogen would contain 5 times less energy than an equivalent tank of jet fuel
- ► Therefore, a hydrogen fuelled aircraft would consume all the fuel just to take-off, climb and descend.

### EVs for CO<sub>2</sub> emission reduction





Small car purchase price plus lifetime fuel cost

#### Kia Niro case study

|                                | ICE        | HYBRID       | PHEV                            | EV             |
|--------------------------------|------------|--------------|---------------------------------|----------------|
| Purchase price                 | \$35,000   | \$40,000     | \$56,000                        | \$78,000       |
| Fuel consumption per 100 km    | 5 l petrol | 3.8 l petrol | 1.3 l petrol +<br>10.5 kWh elec | 14.3 kWh elec. |
| Lifetime fuel cost             | \$40,000   | \$30,400     | \$24,700                        | \$14.200       |
| Tonnes CO <sub>2</sub> emitted | 59.0       | 47.5         | 35.0                            | 18.8           |

Comparing the hybrid with the EV, the  $CO_2$  emission reduction is 28.7 tonnes and the additional cost is \$21,800. Therefore, the cost of  $CO_2$  emission avoidance is \$760 per tonne of  $CO_2$ , which depends on reference assumptions.

| Hybrid vs EV               | Reference<br>Assumption    | Alternative assumption         | Revised<br>\$/tonne CO <sub>2</sub> |
|----------------------------|----------------------------|--------------------------------|-------------------------------------|
| New capital cost subsidy   | none                       | \$8625 - \$1170<br>per l/100km | 606                                 |
| Retail electricity price   | 25 c/kWh                   | 15 c/kWh                       | 563                                 |
| EV electricity consumption | 7 km/kWh                   | 8 km/kWh                       | 693                                 |
| Power generation emissions | 0.5 kgCO <sub>2</sub> /kWh | 0.2 kgCO <sub>2</sub> /kWh     | 595                                 |
| Marginal ICE maintenance   | none                       | \$1/100 km                     | 630                                 |

### Reducing transport CO<sub>2</sub> emissions via EVs

The Kia Niro case study indicates that

- ► The lifetime fuel cost savings of a petrol hybrid are greater than the extra capital cost of the hybrid version. The associated CO<sub>2</sub> emission reductions are without cost.
- ► The PHEV is intermediate between the hybrid and the full-EV.
- ► The comparison of the hybrid and the EV indicates a very high cost of CO<sub>2</sub> emission avoidance.
- A rise in carbon charge to \$250 per tonne of CO<sub>2</sub> by 2050 will not incentivise the switch to EVs by consumers for any of the conditions evaluated.
- The new EV subsidy scheme does not change that conclusion